Bound State Wave Functions through the Quantum Hamilton-Jacobi Formalism

نویسنده

  • S. Sree Ranjani
چکیده

The bound state wave functions for a wide class of exactly solvable potentials are found utilizing the quantum Hamilton-Jacobi formalism. It is shown that, exploiting the singularity structure of the quantum momentum function, until now used only for obtaining the bound state energies, one can straightforwardly find both the eigenvalues and the corresponding eigenfunctions. After demonstrating the working of this approach through a number of solvable examples, we consider Hamiltonians, which exhibit broken and unbroken phases of supersymmetry. The natural emergence of the eigenspectra and the wave functions, in both the unbroken and the algebraically non-trivial broken phase, demonstrates the utility of this formalism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Hamilton-jacobi Formalism and the Bound State Spectra

It is well known in classical mechanics that, the frequencies of a periodic system can be obtained rather easily through the action variable, without completely solving the equation of motion. The equivalent quantum action variable appearing in the quantum Hamilton-Jacobi formalism, can, analogously provide the energy eigenvalues of a bound state problem, without having to solve the correspondi...

متن کامل

Interplay of causticity and vorticality within the complex quantum Hamilton-Jacobi formalism

Interference dynamics is analyzed in the light of the complex quantum Hamilton-Jacobi formalism, using as a working model the collision of two Gaussian wave packets. Though simple, this model nicely shows that interference in quantum scattering processes gives rise to rich dynamics and trajectory topologies in the complex plane, both ruled by two types of singularities: caustics and vortices, w...

متن کامل

2 00 0 Probability Current and Trajectory Representation

A unified form for real and complex wave functions is proposed for the stationary case, and the quantum Hamilton-Jacobi equation is derived in the three-dimensional space. The difficulties which appear in Bohm's theory like the vanishing value of the conjugate momentum in the real wave function case are surmounted. In one dimension, a new form of the general solution of the quantum Hamilton-Jac...

متن کامل

Shape Invariance and the Exactness of Quantum Hamilton-Jacobi Formalism

Quantum Hamilton-Jacobi Theory and supersymmetric quantum mechanics (SUSYQM) are two parallel methods to determine the spectra of a quantum mechanical systems without solving the Schrödinger equation. It was recently shown that the shape invariance, which is an integrability condition in SUSYQM formalism, can be utilized to develop an iterative algorithm to determine the quantum momentum functi...

متن کامل

Bound States and Band Structure - a Unified Treatment through the Quantum Hamilton - Jacobi Approach

We analyze the Scarf potential, which exhibits both discrete energy bound states and energy bands, through the quantum Hamilton-Jacobi approach. The singularity structure and the boundary conditions in the above approach, naturally isolate the bound and periodic states, once the problem is mapped to the zero energy sector of another quasi-exactly solvable quantum problem. The energy eigenvalues...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003